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Prediction of neuro-degenerative
disorders using sunflower optimisation
algorithm and Kernel extreme learning
machine: A case-study with Parkinson’s
and Alzheimer’s disease
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Abstract
Parkinson’s and Alzheimer’s Disease are believed to be most prevalent and common in older people. Several data-mining
approaches are employed on the neuro-degenerative data in predicting the disease. A novel method has been built and
developed to diagnose Alzheimer’s (AD) and Parkinson’s (PD) in early stages, which includes image acquisition, pre-pro-
cessing, feature extraction and selection, followed by classification. The challenge lies in selecting the optimal feature sub-
set for classification. In this work, the Sunflower Optimisation Algorithm (SFO) is employed to select the optimal
feature set, which is then fed to the Kernel Extreme Learning Machine (KELM) for classification. The method is tested
on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and local dataset for AD, the University of California, Irvine
(UCI) machine learning repository and the Istanbul dataset for PD. Experimental outcomes have demonstrated a high
accuracy level in both AD and PD diagnosis. For AD diagnosis, the highest classification rate is obtained for the AD ver-
sus NC classification using the ADNI dataset (99.32%) and local dataset (98.65%). For PD diagnosis, the highest accuracy
of 99.52% and 99.45% is achieved on the UCI and Istanbul datasets, respectively. To show the robustness of the method,
the method is compared with other similar methods of feature selection and classification with 10-fold cross-validation
(CV) and with unseen data. The method proposed has an excellent prospect, bringing greater convenience to clinicians
in making a better solid decision in clinical diagnosis of neuro-degenerative diseases.
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Introduction

Alzheimer’s disease and Parkinson’s disease are distinct
diseases or ends of a neurodegenerative continuum.
The World Health Organization (WHO)1 recognised
dementia as a major health issue, in particular
Parkinson’s Disease (PD). Parkinson’s disease (PD) is a
leading neuro-degenerative disease in people over 65,
affecting nearly 10million people worldwide and on the
rise.2 It is projected to touch 131.5M by around 2050.3

PD is based on the dopamine receptors affecting the
subject’s mobility. The disease progresses with motor as
well as non-motor symptoms. Patients diagnosed with
PD show signs and symptoms related to Parkinsonism.
There are other causes due to drugs and rare conditions
like multiple cerebral infractions and degenerative

conditions.4 Research studies have identified that
genetic mutations, pathogenic inflammation and mis-
folded proteins also contribute to the death of brain
cells in PD patients.5,6 PD is a complicated neuro-
pathological disease containing molecular pathway
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arrays implicated in the disease physiology.7 Noticeable
onset of symptoms or factors like motor factors is diag-
nosed and thereafter treatment is started. Gene factors
also contribute to the disease, which often cannot be
diagnosed easily. Hence, gene factors can be used as
bio-markers for expeditious screening and diagnosis.8

Alzheimer’s disease (AD) produces progressive loss
of memory. Symptoms start to appear in older adult
stages, normally and their prevalence rises with age
sharply.9 Genes play a vital impact in the disease onset,
and certain specific genes may increase the burden by
aggravating the disease. Age, habits like alcohol con-
sumption, smoking, etc. are also some of the causes.10

AD worsens as time progresses.11 Nearly 70% of the
risk is genetic, with depression, stress and hypertension
also playing a significant role.12 There are no supple-
ments or medications to reduce the risk.13 AD people
definitely have to rely on other people for assistance.
They may be subjected to more stress or psycho-
physical and economic pressures.14 Magnetic
Resonance Imaging (MRI) Scans and neuropsychologi-
cal tests are conducted to diagnose the disease if early
symptoms are noticed.15 These diseases are required to
be diagnosed at an early stage, that paves way for
faster treatment and a significant reduction in symp-
toms for which various Machine Learning (ML)
approaches were proposed.16 Current clinical diagnosis
of AD and PD relies on the skills of the professionals,
which necessitates studying hundreds of brain tissue
slides, which is time-consuming and costly. Learning-
based strategies can be deployed to fasten the process
and lower the cost of diagnosis. Moreover, early diag-
nosis using CAD systems is required for integrative
analysis that combines a number of probabilistic and
optimisation techniques to enable computers to extract
information from large, complicated datasets. To better
identify diseases, the machine learning platform com-
bines several data types into a single model. As a result,
researchers are increasingly relying on machine learning
to detect neurodegenerative disorders in their early
stages.

Computer Aided Systems (CAD) have been devel-
oped in recent years to aid in disease and management,
as the ML models have shown immense strength in the
interpretation of data, aiding in diagnosis and sound
clinical decision making.17 Various computational intel-
ligence approaches have been developed these days
which involve multiple procedures mainly devoted to
disease prediction, classification and clustering issues.
These methods are mostly inspired by nature,18,19 evo-
lution phenomenon,20 swarm intelligence,21 evolution-
ary algorithms22 and many more.23 Artificial Neural
Networks (ANN) have shown some promising results
as reported in various disciplines, but designing such a
network is not an easy task. ANNs have regulated pro-
cedures defined by a set of parameters. Setting of such
parameters is a vital and crucial task as they determine
or regularise the ANNs in obtaining better perfor-
mance. As many studies have indicated, there is no

optimal procedure for this and it also varies from prob-
lem to problem. In a research to construct a smaller
number of parameters for setting optimal procedure,
Extreme Learning Machine (ELM) was proposed.24

But the ELM had its own demerit in obtaining the most
accurate result. Hence, a variant of ELM called Kernel
ELM was proposed.25 With technical advancements
blooming, literature has shown different machine learn-
ing approaches towards detecting neuro degenerative
diseases.

In the next section, a brief literature study has been
outlined with respect to PD and AD diagnosis.

Literature review

Little et al.26 demonstrated a method that identifies PD
in patients having dysphonic indications employing
Support Vector Machines (SVM), Efficient Learning
Machines (ELM) with feature selection. The experi-
mental outcome showed that the model was able to
identify efficiently, PD patients having four such fea-
tures only. Das27 compared the classification scores of
ANN, DMneural, Regression and Decision Trees in
diagnosing PD, where ANN obtained 92.9% results.
Sakar et al.28 developed a method combining SVM and
mutual information feature selection in detecting PD.
92.75% classification accuracy was reported. An
improved accuracy of 93.47% was reported by Li et al29

employing SVM and Fuzzy Nonlinear Transformation
(FNLT) method in diagnosing PD. Chen et al.30 pro-
posed a method combining Fuzzy k-nearest neighbour
classifier (FKNN) and Principal Component Analysis
(PCA-FKNN) to diagnose PD, yielding 96% accuracy.
Ozcift and Gulten31 reported ensemble classifiers based
on rotation forest involving feature selection by
correlation-based method in identifying PD in patients
and observed 87.13%. accuracy. Shen et al.32 presented
a method based on enhanced SVM and fruit fly optimi-
sation algorithm, attaining 96.67% accuracy. Authors in
Cai et al.,33 reported an optimal SVM using Bacterial
Foraging Optimisation (BFO) in combination with relief
selection of features in predicting PD, exhibiting 97.42%
accuracy of classification. The Feed Forward Parallel
NN was developed by the authors in34 to diagnose PD
and attained 84% accuracy. Spadoto et al.35 presented a
method combining evolutionary techniques with an
Optimum-Path Forest (OPF) classifier to diagnose PD,
yielding 84.01% accuracy. Integrated Fuzzy C-Means
clustering with feature weighting (FCMFW) along with
KNN was reported by Polat36 in classifying PD, achiev-
ing 97.93% accuracy. Cai et al.37 proposed an intelligent
technique to identify PD employing Chaotic Bacterial
Foraging Optimisation with Enhanced fuzzy KNN clas-
sifier, obtaining 97.89% accuracy on the basis of vocal
measurements.

Authors in38 proposed a novel multivariate tech-
nique to detect Alzheimer’s Disease (AD) utilising
Stationary Wavelet Entropy (SWE) and Predator-Prey
Particle Swarm Optimisation (PPPSO). Brain imaging,
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axial scale selection, feature extraction by SWE and
classification by NN were steps involved. PPPSO was
employed to adjust the bias and weights of the NN.
Thirteen features were selected and the method yielded
92.73%6 1.03% accuracy. Dessouky and Elrashidy39

reported feature extraction techniques of AD images
employing various optimisation algorithms and com-
pared evolutionary algorithms such as PSO, BA, GA,
pattern search, etc., in detecting AD. Pattern search
was recorded as the best with the highest accuracy rate.
The authors of40 presented a comprehensive review of
165 AD papers involving feature extraction and
Machine Learning (ML) approaches from 1995 to
2019, based on SVM, ANN and Deep Learning (DL).

Andres Ortiz et al,41 reported an ensemble of DL
architectures to diagnose AD at an early stage. Peng et
al42 employed genetic information and MRI data for
feature extraction and utilised SVM multiple kernel
learning. Leave one-out cross validation (LOOCV) was
utilised for classifying Alzheimer’s. Shree and
Sheshadri43 provided a detailed investigation into AD
diagnosis using various classification methods. A
review on the early diagnosis of AD was presented by
Khan and Usman.44 The instance-based learning
method was adopted in Khan et al.45 to diagnose AD.
Shankar et al.46 proposed AD detection employing an
optimised feature set selected by Group Grey Wolf
Optimisation (GGWO) with a Convolutional Classifier
yielding 96.23% classification accuracy. Islam and
Zhang47 investigated a DL technique to identify AD
from the MRI data. Xiao et al.48 proposed an experi-
mental method to identify AD involving textural fea-
tures and voxel-based morpho-metric neuro-imaging.
SVM was used as a classifier. Entropy feature selection
was used in reducing issues related to dimensionality,
achieving 88% accuracy. Silva et al.49 attempted to pre-
dict AD employing Haralick features by a feature
extraction process. GA and PSO were employed for
feature selection with the RF classifier producing
78.9% and 77.66% accuracy while using GA and PSO,
respectively. Acharya et al.,50 the authors developed a
Computer-Aided-Brain-Diagnosis (CABD) system to
identify if a brain scan shows AD signs using feature
extraction methods. Authors proved that the Shearlet
Transform (ST) method of feature extortion offered
better outcomes in AD diagnosis, compared to other
works. The KNN classifier was used to achieve 94.54%
accuracy, 96% sensitivity and 93.64 % specificity.
Feature ranking and GA was employed in Beheshti
et al.51 to diagnose AD by predicting mild cognitive
impairment-to-Alzheimer’s conversion obtained from
structural MRI (sMRI). State-of-the-art approaches
reviewed in the literature are listed in Table 1. The table
summarises certain important approaches adopted to
diagnose AD and PD, with their contributions and
implications.

To put it in a nutshell, there is research going on to
detect neuro-degenerative disorders like PD and AD,
employing various hybrid and DL techniques. Many

optimisation algorithms have been evolved and
employed in various aspects, like feature selection, opti-
mising the weights and bias of the classifier, etc., in
delineating the diseased condition. In this study, the
Sunflower Optimisation algorithm (SFO) is deployed
to select optimal features and fed to KELM for classifi-
cation. Contributions to the work include:

(i) The newly developed Sunflower Optimisation algo-
rithm (SFO) is implemented for selecting relevant
features in neurodegenerative disease classification
employing image and vocal measurement properties.

(ii) SFO performed well in selecting the optimal fea-
ture set with a high rate of convergence when com-
pared with other similar algorithms.

(iii) Kernel ELM is employed for classification which
outperformed other classifiers.

(iv) To obtain a better estimation of the final model’s
error, the model is tested with unseen data and 10-
fold cross validation.

(v) A balance between maximum classification accuracy
and minimum error is achieved through SFO-KELM.

Rest of the paper is structured as: Section 2 outlines the
proposed framework consisting of dataset preparation,
feature extortion, optimal feature selection using SFO
and classification using KELM. Section 3 discusses the
experiment conducted and illustrates the results. The
conclusion is provided in Section 4.

Proposed frame work

This section outlines the framework developed for
investigating neuro-degenerative disorders. Initially, the
dataset is prepared from the ADNI and local datasets
for AD and from the UCI repository and Istanbul for
PD, followed by feature selection using the Sunflower
Algorithm (SFO). The SFO algorithm is inspired by the
natural behaviour of sunflowers and can be classified as
an iterative metaheuristic optimisation algorithm based
on population for solving multi-dimensional problems.
SFO has proved to be efficient in finding global optimal
solution.52 SFO avoids getting stuck at local optima
and doesn’t require derivatives while the objective func-
tion is evaluated. SFO was employed successfully in sol-
ving benchmark problems with better convergence in
spite of the non-refined parameters. This proves SFO’s
healthier performance when compared to the well-
known techniques like GA and PSO.62

Dataset collected from the AD database is subjected
to pre-processing before being applied in the process.
The optimal feature subset is generated from the feature
selection process and applied to the Kernel Extreme
Learning Machine (KELM) classifier. ELM proved to
be better at learning the forward neural networks and
avoided gradient descent training methods as encoun-
tered in back propagation networks. ELM has been
better at classification for medical diagnosis. KELM
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has multi-dominance over ELM by combining the ker-
nel function. There is a non-linear mapping of linear
non-separable mode onto a high dimensional (HD) fea-
ture space. In this way, improved accuracy and linear
separability can be attained. If there are large training
samples and where the hidden feature map is not
known, KELM has been beneficial. KELM has proved
to be better at tackling the issue of large variations in
the classification accuracy which are encountered in
ELM as reported in different studies. Further, it does
not need any randomness in the process of assigning
the connection weights between the input and hidden
layers. KELM has proved its efficiency in disease diag-
nosis, hyperspectral remote-sensing image classifica-
tion, activity recognition, etc. In KELM, hidden layer
node optimisation is avoided and hence, possible to
obtain the least square optimal solution. SFO and
KELM are described in subsequent sections. KELM is
used in a wide variety of classification problems as com-
pared to SVM and ELM.25,53 More information on
KELM is established in section 2.4. The overall frame-
work is represented in Figure 1.

Dataset preparation

Alzheimer’s Disease (AD) dataset. The Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database54 is used
(http://adni.loni.usc.edu). The database was created as
a part of an initiative to develop biomarkers for AD
detection. Samples of 1409 subjects obtained from
ADNI’s MRI investigations were collected using a
1.5TMRI scanner. The subjects were analysed using
the MP-RAGE sequence (T1-weighted) that included
294 subjects with AD, 763 with MCI and 352 normal
controls). The database contains images of normal per-
son denoted as NC and disease conformed patients
denoted by AD. Persons with a slight, noticeable and
measurable decline in their cognitive skills like memory,
thinking, etc. are at an elevated risk of developing AD
or another dementia which is denoted as MCI. ADNI-
1, ADNI-2 and ADNI-GO subjects were included
which comprise baseline 3D T1-weighted scans. Those
images are also included in the dataset. Table 2 shows
the demographic information collected from the ADNI.

Sample images taken from the ADNI dataset is illu-
strated in Figure 2.

Table 1. State of art approaches towards AD and PD disease diagnosis.

Author Objective Implications

Little et al.26 Identifies PD in patients having dysphonic
indications employing SVM, ELM with feature
selection

Non-standard methods and traditional
harmonics-to-noise ratios demarcate normal
from PD.

Das et al.27 Classification methods such as Neural
Networks, DMneural, Regression and Decision
Tree are compared for PD diagnosis.

Reliable PD diagnosis is notoriously hard to
attain with mis-diagnosis accounting to be as
high as 25% of the cases.

Sakar et al.28 Selects a minimal feature subset with maximal
joint relevance to the PD-score and to introduce
a predictive model with minimal bias

Mutual information score with permutation for
relevance assessment and its statistical
significance in relation to the features and PD-
score

Li et al.29 Extraction of optimal feature subset to raise the
analytical performance when small data set is
available.

Fuzzy- transformation method is better to PCA
and KPCA methods.

Chen et al.30 Employs PCA to generate the most
discriminative feature sets, FKNN is applied to
detect PD

Better accuracy compared to SVM

Shen et al.32 Proposes a new SVM parameter tuning method
using fruit fly optimisation algorithm (FOA) to
identify PD

Compared with PSO-SVM, GA-SVM, the method
attained better accuracy and reduced
computational time

Cai et al.33 Develops an optimal SVM with bacterial foraging
optimisation (BFO) in predicting PD

Relief feature selection increased the accuracy to
97.42%

Cai et al.37 Couples the chaotic bacterial foraging
optimisation with Gauss mutation (CBFO)
approach with FKNN to detect PD

Better performance when compared to PSO,
GA and FOA

Zhang et al.38 Detects AD using multivariate approach Using
Stationary Wavelet Entropy and PP-PSO

Four level decomposition method identified the
subject in 0.88 s after volumetric pre-processing

Shankar et al.46 Employs Group GWO (GGWO) technique to
improve AD detection using KNN, DT and
CNN

Reduced feature sets obtained with 96%
classification accuracy.

Xiao et al.48 Combines different features from sMRI: grey-
matter volume, grey-level cooccurrence matrix
and Gabor feature to detect AD.

Multi-feature combination correlation is analysed
to enhance SVM-RFE algorithm by covariance
method

Silva et al.49 Combines textural features from GLCM with
morphometry neuroimaging analysis based on
voxels

Certain anatomical brain regions are targeted
and classifiers are compared

Beheshti et al.51 Predicts conversion of MCI to AD between first
and third year ahead of clinical diagnosis.

Feature-ranking with GA employed to analyse
structural magnetic resonance imaging data.

Balasubramanian et al. 441

http://adni.loni.usc.edu


An independent dataset is obtained from the local
clinical diagnostic centre. A 1.5T MRI scanner was
used to obtain MRI brain examinations from which
HR T1-weighted MP-RAGE 3D-sequence were
acquired. Table 3 depicts the demographics of the set
collected. On comparing with the patients in the ADNI
dataset, the figures show that the AD patients at the
local clinic had acute symptoms. Clinical assessments
were completed by an experienced neurologist who was
blinded to the MRI results.

MRI pre-processing. Brain MR images obtained from the
ADNI database are subjected to pre-processing in
order to eliminate noise in the MR images. The images
are processed to reduce noise using a median filter.
Median Filtering is applied on the collected dataset
which preserves the edges of the image, rejecting noise
and enhances the image quality. Computation is

performed by pixel replacement with the median score
of the raw input image. The procedure followed is the
same as that used in.55 The median filter is preferred
owing to its excellent noise reduction with limited blur-
ring, specifically with large magnitudes. A sample pre-
processed image is shown in Figure 3.

Parkinson’s disease (PD) dataset. The PD dataset acquired
from the UCI Machine Learning Repository56 was uti-
lised for evaluating the proposed work. Bio-medical
voice measurements are obtained from 31 subjects, out
of which 23 are diseased. Each of the columns provided
denotes a particular vocal measure, and each of the
rows represents one of the 195 voice recordings. The

Figure 1. Framework of the method.

Table 2. Demographics from ADNI set.

Parameter NC AD MCI

Sample size 352 294 763
Men: Women 167:185 158:136 438:325
Age 74.53 6 6.16 75.13 6 7.75 73.80 6 7.35
CDR 0.03 6 0.12 4.46 6 1.61 1.95 6 0.97
MMSE 29.07 6 1.16 23.12 6 2.1 26.91 6 1.78

CDR: clinical dementia rating scale; NC: normal controls; MCI: mild

cognitive impairment; MMSE: mini mental state examination.

Figure 2. Sample images from ADNI dataset: (a) normal
controls, (b) Alzheimer disease and (c) mild cognitive
impairment.

Table 3. Demographics from local hospital.

Parameter NC AD MCI

Sample size 40 90 45
Men: Women 22:18 50:40 20:25
Age 67.1 6 6.2 68.43 6 8.4 70.6 6 7.1
CDR 0.04 6 0.2 1.2 6 0.6 0.5 6 0.1
MMSE 29.4 6 1.2 18.4 6 4.5 26.4 6 2.0

CDR: clinical dementia rating scale; NC: normal controls; MCI: mild

cognitive impairment; MMSE: mini mental state examination.
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time line for the diagnosis is from 0 to 28 years with
subjects aged between 46 and 85. Each and every sub-
ject contributed six phonations on an average, the
alphabetic vowel with a duration of 36 s. Table 4 depicts
the demographics from the UCI dataset.

Description of the same is provided in Table 5.
Sakar et al.57 deposited the second data set used in

this investigation, known as the Istanbul dataset for
PD diagnosis. It included a variety of recordings of the
sound, such as sustained vowels, numbers, words and
sentences in short collected from 68persons. A training
dataset was obtained from 40 people, which included
20 diagnosed with Parkinson’s in the age group of 43–
77 and 20 healthy people in the age group of 45–83.
The data for testing was acquired from 28 subjects with
PD in the range 39–79. Three types of sustained vowel
recordings are utilised in this study: /a/, /o/ and /u/, all
of which had same data types as the UCI dataset. All
are combined and created a database with 288 sus-
tained vowel samples in total, on which the analyses
were performed. For each speech sample, a set of 26
linear features and time and frequency based features is
extorted, as shown in Table 6.

Feature extraction

AD dataset. Extracting relevant features from the input
image is a very specialised task as it increases the sys-
tem efficiency. Features explain certain computational
properties of the input image given. After pre-process-
ing, promising features were identified from the images

that serve as a distinguishing feature for AD diagnosis.
From the images that are pre-processed, the following
features are extorted as they represent various charac-
teristics of the image which are elucidated below.

Textural features (TF). Texture is characterised by grey
scale variation in spatial position. The Grey Level Co-
occurrence Matrix (GLCM) and Grey-Level Run
Length Matrix (GLRLM) were considered. GLCM
represents the intensity correlation between the image
pixels at a certain distance in the designated direction.58

Periodicity and spatial grey level dependencies are
depicted by these texture features. GLRLM is gener-
ated from surface features. Run length is the count of
neighbouring pixels having similar grey power slated
under a particular header.

Histogram features (HF). These demonstrate the pixels
at every intensity value in the image.

SURF, SIFT and oriented FAST and rotated BRIEF (ORB)
Features. These features are object features that are not
affected by complications like object scaling, rotation,
etc. and are resilient to noise effects.

Figure 3. Sample images of original and pre-processed MRI: (a)
original MRI and (b) filtered MRI.

Table 4. Demographics from UCI dataset.

Parameters Values

No of subjects 23 PD and 8 normal
Time line period for recording voice 0–28 years
Age 46–85
Average phonations of
the alphabetic vowel

6

Duration 36 s

Table 5. Parkinson’s disease dataset description from UCI.

Features Attribute Description

F1 MVDP : Fo (Hz) Average vocal
fundamental frequency

F2 MVDP : Fhi (Hz) Maximum vocal
fundamental frequency

F3 MVDP : Flo (Hz) Minimum vocal
fundamental frequency

F4 MVDP : Jitter (%) Several measures of
variation in
fundamental frequency

F5 MVDP : Jitter (Abs)
F6 MVDP : RAP
F7 MVDP : PPQ
F8 Jitter : DDP
F9 MVDP : Shimmer Several measures of

variation in amplitude
F10 MVDP : Shimmer (dB)
F11 Shimmer : APQ3
F12 Shimmer : APQ5
F13 MVDP : APQ
F14 Shimmer : DDA
F15 NHR Two measures of ratio

of noise to tonal
components in the
voice

F16 HNR
F17 RPDE Two non-linear

dynamical complexity
measures

F18 D2
F19 DFA Signal fractal scaling

exponent
F20 Spread 1 Three non-linear

measures of
fundamental frequency
variation

F21 Spread 2
F22 PPE
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Local binary pattern features (LBP). Binary pattern fea-
tures represent the surroundings of pixels in the regions.

Wavelet features (WF). Spatial and frequency domain
information from the anatomical structures can pro-
vide more information by releasing hidden frequency
selective information. Anisotropic Dual Tree Complex
Wavelet transform (ADT-CWT) was performed on
MRI to extract wavelet features. Horizontal or Vertical
decomposition of sub bands was performed as in.59

Anisotropic and directional basis features were
extracted that resulted in 10 sub band information.
Decomposing sub bands resulted in extraction of first
and second order textural features such as mean, var-
iance, homogeneity and energy.

Fractal dimension (FD) features. These features illus-
trate the appearance and shape of the objects having
properties of scale-invariance and self-similarity.
Fractal dimension is a measure of surface roughness or
boundary irregularity.60 Box counting method61 was
employed to extract the features such as FD, lacunar-
ity, correlation coefficient.

The list of features extracted is shown in Table 7.

UCI dataset. The list of standard features taken from
the UCI is illustrated in Tables 5 and 6 in the previous
section.

Feature selection

This step is most significant, as computing all the
obtained features is highly complex. There may be
some irrelevant/redundant features that do not contrib-
ute in identifying the disease, which may have to be dis-
carded. Hence, this step is highly essential. In short, it
is necessary to identify the features that have a high
potential for influencing or triggering the disease,
which aids in improving classification or prediction
accuracy. The extracted features are subjected to fea-
ture selection by the Sunflower Algorithm (SFO). The
next section explains the SFO with initial background
information and its applicability in the feature selection
process for the datasets collected.

Sunflower optimisation algorithm (SFO). The SFO algo-
rithm, inspired by nature, is based on population pro-
posed by Gomes et al.62 The algorithm emulates the
orientation of sunflowers towards the sun. Sunflowers
search to orient themselves in a better way to capture
the radiation from the sun. During such a movement,
fertilisation happens between the neighbouring flowers
in the close vicinity. The aggregate of radiation
absorbed depends on the distance between the flowers
and the sun in relation to the inverse square law of
radiation.63 If the distance is less between the sun and
the plant, more will be radiation absorbed by the

Table 6. Parkinson’s disease dataset description from Istanbul
dataset.

Label Feature

S1 Jitter (local)
S2 Jitter (local, absolute)
S3 Jitter (rap)
S4 Jitter (ppq5)
S5 Jitter (ddp)
S6 Number of pulses
S7 Number of periods
S8 Mean period
S9 Standard dev. of period
S10 Shimmer (local)
S11 Shimmer (local, dB)
S12 Shimmer (apq3)
S13 Shimmer (apq5)
S14 Shimmer (apq11)
S15 Shimmer (dda)
S16 Fraction of locally unvoiced frames
S17 Number of voice breaks
S18 Period of voice breaks
S19 Median pitch
S20 Mean pitch
S21 Standard deviation
S22 Minimum pitch
S23 Maximum pitch
S24 Autocorrelation
S25 Noise-to-Harmonic
S26 Harmonic-to-Noise

Table 7. Features extracted from AD set.

S.No Feature set Features extracted

1 GLCM (f1–f22) Autocorrelation, Contrast,
Correlation, Cluster
Prominence, Cluster Shade,
Dissimilarity, Energy, Entropy,
Homogeneity, Maximum
Probability, Sum Of Squares,
Sum Average, Sum Variance,
Difference Variance, Difference
Entropy, Information Measure of
Correlation 1 And 2, Inverse
Difference Normalised, Inverse
Difference Moment Normalised,
Angular Second Moment,
Inertia.

2 GLRLM (f23–f29) Long Runs Emphasis, Short Runs
Emphasis, Grey-Level Non-
Uniformity, Run Length Non-
Uniformity, Run Percentage,
Low Grey-Level Emphasis, High
Grey-Level Run Emphasis

3 Histogram (f30–f34) Mean, Variance, Standard
Deviation, Kurtosis, Skewness

4 SURF, SIFT, ORB, LBP (f35–f38)
5 Wavelet (f39–f42) Mean, Variance, Homogeneity,

Energy
6 Fractal (f43–45) Fractal Dimension, Lacunarity,

Correlation co-efficient
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flower, else otherwise. The amount of radiation
received by the plant will be

I=
P

4pd2
ð1Þ

Where I denote solar radiation intensity, P denotes the
source power and d represents inter flower distance and
the sun. Each sunflower orients itself to the direction of
the sun as shown in equation (2)

Si
!

=
X��Xi

X��Xik k , i=1, 2, 3, ::::n ð2Þ

Where X* represents the overall best solution, Xi

denotes the current solution and n the population size.
The step of individuals (sunflowers) towards the sun is
expressed as in equation (3)

di = gPi Xi +Xi�1k kð Þ3 Xi +Xi�1k k ð3Þ

In the above equation, g denotes the inertial displace-
ment of the sunflowers. The probability of pollination
that each sunflower i, fertilises with the closest neigh-
bour i–1 producing new individuals in a new position
that changes with respect to the distance between the
flowers is represented by PiXi+Xi�1. Each individual
that is close to the sun takes small steps in searching
for a local refinement while others move normally.
Individuals are seen that don’t skip regions conforming
to the global minimum. Hence, there is a restriction on
the maximum step defined for each individual as given
by equation (4).

dmax =
Xmax�Xmink k

2n
ð4Þ

Where Xmin and Xmax denote the lower and upper
bounds. n represents the population.

Each sunflower i updates its position to generate
new generation, on the basis of orientation of sun-
flowers towards the sun as shown in equation (5).

X
!

i+1 = Xi
�!

+di3Si
! ð5Þ

Where Xi + 1 represents the newly generated individual
(sunflower) position.

SFO starts with the population generation and may be
even or randomised. The individual with the best evalua-
tion will be converted to the sun. In the proposed work,
the number of suns is restricted to one. All the other sun-
flowers will then align themselves as sunflowers move
towards the sun, randomly moving in a specified direction.
Figure 4 represents the SFO algorithm.

Classification

The selected feature set from SFO is fed to the Kernel
Extreme Learning Machine (KELM) for classification.
KELM, developed by Huang,24 is an enhanced version
of the original ELM. KELM has dominance over the
original ELM by combining kernel function onto the
ELM. KELM has the property to map non-linearly,
the linear non-separable model onto a high dimensional
(HD) feature space, ensuring linear separability and a
higher accuracy rate. As the ELM learning algorithm is
for Single Hidden Layer Feed Forward Neural

Figure 4. Pseudocode of SFO.
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Network (SLFN), it is possible to represent SLFN as
in Huang et al.64

f(x)=h(x)=Hb ð6Þ

Where x denotes sample, f(x) denotes the NN output,
h(x) is the class vector, H specifies the matrix of hidden
layer feature mapping, b represents the weight of the
hidden layer output link layer. For minimising training
error and enhancing the generalised performance, b is
represented as

b=HT 1

C
+HHT

� ��1
T ð7Þ

Where T represents the output matrix of samples
expected and C is the regularisation co-efficient. The
output function of ELM is

f(x)=Hb=HHT 1

C
+HHT

� ��1
T ð8Þ

If h(x) is unknown, the kernel matrix of ELM satisfying
Mercer’s conditions is stated as

m=HHT;mij =h(xi) � h(xj)=K(xi, xj) ð9Þ

Hence, the KELM output function could be expressed
by

f(x)= K(x, x1), :::::K(x, xN)½ � 1

C
+m

� ��1
T ð10Þ

K (x, y) represents the kernel function of hidden neu-
rons of SLFN

Many types of kernels such as linear, exponential,
wavelets, polynomial, etc. have extensively used in
research works. In this work, the kernel used is
Gaussian57 denoted as

K(x, y)=exp � x� yk k2

2g2

 !
ð11Þ

For KELM, the vital factors that have to be tuned
properly are the regularisation co-efficient C and
Kernel parameter g.65 They decide the KELM
performance.

Experiment and results

In this section, the experiment carried out is investi-
gated and the outcomes are recorded. The experiments
are investigated in MATLAB run on Windows 7 ulti-
mate OS, Intel Core i3-7100U CPU @ 2.4GHz and
8GB RAM. All the algorithms are implemented from
scratch. From the final set of features, 45 from ADNI

and 22 from the PD dataset, the SFO algorithm selected
only the top ranked features as provided in Table 8 for
the AD set. Totally, 21 features were selected from the
AD set. For the PD dataset, six (F1, F16, F17, F18,
F19, F22) features from the UCI dataset and eight (S2,
S9, S16, S18, S21, S24, S25, S26) features from the
Istanbul dataset are selected by the SFO. The selected
features are fed separately to the KELM for classifica-
tion. The efficiency of the SFO depends on maximum
number of iterations, (generation, days), which will be
the stopping criterion. In the proposed work, SFO is
employed to choose the best minimal set of features
that enhance the classification rate. The fitness function
in this work is set by

Fitness=mP+(1� m)
N� L

N

Where P denotes the classification accuracy, L repre-
sents the no. of features selected and the total number
of features is shown by N. m denotes the accuracy
weight usually selected between 0 and 1. 1–m is the fea-
ture selection quality weight.

Control Parameters set for the SFO is shown in
Table 9.

Aside from the standard control parameters
described in Table 9, the mortality rate is set as 0.1 and
the survival rate as 1 (pollinate rate + mortality rate).
Lower bound and upper bound values range from (25
to +5). SFO is compared with Genetic Algorithm
(GA) and Grey Wolf Optimisation Algorithm (GWO)
on the selection of features as they are prominent

Table 8. Features selected from AD dataset.

Feature set Features selected Number of
features

GLCM Contrast, Correlation,
Dissimilarity, Energy, Entropy,
Difference Entropy, Difference
Variance, Angular Second
Moment

8

GLRLM Long Run Emphasis, Grey-Level
Non uniformity, Run Percentage,
High Grey-Level Run Emphasis

4

Histogram Skewness, Kurtosis 2
SURF, ORB, LBP 3

Wavelet Homogeneity, Energy 2
Fractal Fractal Dimension, Lacunarity 2

Table 9. SFO control parameters.

Parameters Value

Number of sunflowers 100
Pollination 0.6
Sun 1
Days/Generations 100
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optimisation algorithms widely used. Control
Parameters for GA and GWO for comparison are
given in Table 10. To obtain classification results
unbiased, 10-fold cross validation and unseen data vali-
dation are performed.66,67 Most of the studies have pre-
ferred k to be 10 for cross fold validation. ninety
percent of the available samples were utilised for train-
ing purposes, the rest for testing. The average result of
all the 10 trials is calculated. In this case, the testing
sets stay independent, thus promising reliable and pre-
cise results

The optimisation process of GA, GWO and SFO is
observed through an iteration process as shown in
Figures 5 and 6 for AD and PD, respectively.

It is seen from Figure 5 that SFO converges com-
pletely after the 16th iteration while GA and GWO,
converge after the 42nd and 35th iterations respectively,
on the AD dataset. Similarly, from Figure 6, it can be
seen that SFO converges after the 11th iteration com-
pared to GA and GWO which converged after 45th
and 30th, respectively on the PD dataset. It clearly indi-
cated that SFO is effective in quickly finding the best
solution. The fitness value is also higher compared to
GA and GWO. GA and GWO have mixed responses in
the initial iterations, while SFO has a clear way to
converge.

The features optimised by SFO are fed to KELM for
classification. Regularisation co-efficient C is chosen as
32 and kernel parameter g is selected as 1. It is experi-
mented with different combinations using a grid search
technique, where the results recommended the best per-
formance of KELM with (C, g) as (32, 1). The search
range for C is between {225, 232, ..25} and that of g

between {252, 232, ..25}. The classifier produced out-
put that is either diseased or normal. Performance eva-
luation metrics adopted are tabulated in Table 11.

The performance of the method proposed is validated
and tested on patients and controls, with the following
classifications such as: AD versus NC, MCI versus NC,
AD versus MCI. The model is experimented on the
ADNI dataset first, and subsequently on the local data-
set for each classification. The dataset is divided into
training set and validation set (70% of the images) and

Table 10. Control parameters for GA and GWO.

Parameters Value

Population size 100
Maximum iteration 100
Problem dimension N (feature size)
Crossover probability – GA 0.8
Mutation probability – GA 0.01
a and b– GWO fitness function 0.99 and 0.01

Figure 5. Average Fitness comparison between the algorithms
for AD dataset.

Figure 6. Average Fitness comparison between the algorithms
for PD dataset.

Table 11. Performance metrics.

Parameter Expression

Sensitivity TP

TP + FN
Specificity TN

TN + FP
Accuracy TP + TN

TP + FN + TN + FP
Precision/Positive predictive value TP

TP + FP
Recall TP

TP + FN
F-1 Score

2�
(Precision)(Recall)

Precision + Recall
G-Mean

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sensitivity3specificity

p
Where

TP: Number of correct predictions that an instance is positive

FP: Number of incorrect predictions that an instance is positive

FN: Number of incorrect predictions that an instance is negative

TN: Number of correct predictions that an instance is negative
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a test set (30% of the images). In addition to accuracy,
sensitivity and specificity, G-mean and F1-score mea-
sures are calculated. The sensitivity of an imbalanced
categorisation may be more significant than the specifi-
city. The geometric mean, or G-Mean, is a measure that
combines sensitivity and specificity into a single value
that balances both objectives. Even if the negative cases
are accurately categorised, a low G-Mean indicates poor
performance in the categorisation of positive cases. This
criterion is crucial for avoiding overfitting the negative
class and underfitting the positive class. Table 12 reports
the proposed method’s binary classification rates on the
test dataset. In all of the comparisons, the outcome
showed high classification accuracy levels. The highest
accuracy, sensitivity and specificity are obtained in the
AD versus NC classification tests employed on both the
ADNI and the local dataset. The model provided an
appreciable discrimination between MCI and NC with
an appreciable performance.

A high F-1 score indicates that the classifier per-
forms well in the case of minority classes. A low value
of G-mean show poor classification in categorising pos-
itive cases. This criterion is crucial for avoiding overfit-
ting the negative class and underfitting the positive
class. The proposed method attains a high value of
G-Mean and an F-1 score, thus overcoming the afore
mentioned issue. Comparative investigations are done
between SFO-KELM and other competitive
approaches, including GA-KELM, GWO-KELM, to
prove the efficacy of the method. Competitive algo-
rithms are used for comparison. Ten-fold cross valida-
tion and unseen data validation is performed to avoid
bias during the process. Table 13 shows the average
classification outcomes of the three optimisation
approaches with KELM in terms of selected attributes
or features and performance evaluation metrics on the
ADNI and local dataset.

From Table 13, it can be inferred that among the
three approaches, SFO-KELM has performed better
with the least number of features selected with 99.32%
accuracy on the ADNI and 98.65% on the local data-
set. Figure 7 shows the computational time in seconds
during 10-fold CV runs on the ADNI dataset as it con-
tained a greater number of images. It can be inferred
that the SFO-KELM requires almost 45sec to finish the
training and prediction process in each of the folds for
the AD dataset. SFO-KELM on the ADNI dataset

requires significantly less computational effort. Figure
8 shows the average computational time in seconds dur-
ing 10-fold CV runs on the UCI dataset.

As seen from Figure 8, SFO-KELM needs an aver-
age of almost 16sec to finish the training and prediction
process in each of the folds for the PD dataset. Using
SFO-KELM on the PD dataset requires less computa-
tional time. To evaluate the KELM classifier, KELM
and other classifiers like Random Forest (RF), Support
Vector Machine (SVM) and K-NN are compared.
Table 14 shows the comparative performance of SFO-
KELM with other classifiers on the ADNI and local
datasets. From Table 14, it can be inferred that SFO-
KELM outperformed other classifiers in predicting the
class label. It can also be seen that SFO when used with
other classifiers had a variation of around 5% which
showed the efficacy of SFO.

Tables 15 and 16 show the average classification
outcomes of the three optimisation approaches with
KELM in terms of selected attributes or features and
performance evaluation metrics on the UCI dataset
and Istanbul dataset respectively.

From Table 15, it can be inferred that among the
three approaches, SFO-KELM has performed better
with the least number of features selected with 99.52%
accuracy, 99.11% sensitivity, 98.66% specificity, 98.8%
F-1 Score and 98.88% G-Mean. Similar performance is
obtained for the Istanbul dataset as well, as observed
from Table 16. Though the number of features selected
differs from GWO-KELM for the second dataset, the
method attained the highest accuracy with 100%

Table 12. Binary classification results on the AD datasets.

Class Dataset Acc (%) Sen (%) Spec (%) G-Mean (%) F-1 score (%)

AD versus NC ADNI 99.32 98.9 99.66 99.28 99.6
Local 98.65 98.4 98.5 98.45 98.5

MCI versus NC ADNI 97.85 96.56 96.67 96.61 96.3
Local 97.38 97.01 97.1 97.05 95.6

AD versus MCI ADNI 97.62 95.81 96.87 96.34 97.7
Local 95.56 94.89 94.76 94.82 96.4

Table 13. Experimental outcomes of the feature selection
approaches on AD dataset.

Method Features
selected

Class Accuracy (%)

ADNI Local

SFO-KELM 21 AD versus NC 99.32 98.65
MCI versus NC 97.85 97.38
AD versus MCI 97.62 95.56

GA-KELM 30 AD versus NC 92.47 93.42
MCI versus NC 93.38 94.18
AD versus MCI 91.09 92.45

GWO-KELM 25 AD versus NC 95.49 96.67
MCI versus NC 94.26 95.21
AD versus MCI 93.22 92.16
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specificity and 99.01% sensitivity. A high F-1 score
indicates that the classifier performs well in the case of
minority classes. A low value of G-mean show poor
classification in categorising positive cases. This criter-
ion is crucial for avoiding overfitting the negative class
and underfitting the positive class. The proposed
method attains a high value of G-Mean, thus overcom-
ing the afore mentioned issue. To estimate KELM clas-
sifier performance, KELM and other classifiers like
Random Forest (RF), Support Vector Machine (SVM)
and K-NN are compared. Table 17 shows the compara-
tive performance of SFO-KELM with other classifiers.
From Table 17, it can be inferred that SFO-KELM

Figure 7. Comparison of the methods in terms of CPU time on the ADNI dataset.

Figure 8. Comparison of the methods in terms of CPU time on the UCI dataset.

Table 14. Comparison of proposed SFO-KELM with other
classifiers in AD diagnosis.

Method Accuracy (%)

ADNI Local

SFO-RF 93.67 92.46
SFO-KNN 95.16 94.28
SFO-SVM 97.45 96.82
SFO- KELM 99.32 98.65

Table 15. Experimental outcomes of the feature selection approaches on UCI dataset.

Method Features selected Acc (%) Sen (%) Spec (%) G-Mean (%) F-1 score (%)

SFO-KELM 6 99.52 99.11 98.66 98.88 98.8
GA-KELM 10 91.69 95.32 94.45 94.90 93.5
GWO-KELM 7 95.66 97.99 94.57 96.26 96.4
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outperformed other classifiers in predicting the class
label. It can also be seen that SFO when used with other
classifiers had a variation of around 4%–5% which
showed the efficacy of SFO.

To accomplish better estimation of the final model’s
error, the model was tested with unseen data, where the
data is randomly split into two sets, one each for train-
ing and testing. Table 18 shows the overall experimental
results using unseen datasets.

Further, the proposed framework is compared with
approaches illustrated in the related literature towards
PD and AD as depicted in Table 19.

Conclusion

Data mining techniques have taken a tremendous path
in medical diagnosis after the advancement in computer
aided technologies. In this work, SFO-KELM was
employed in detecting AD and PD. The methodology
encompassed the main steps of feature selection and
final classification. Distinct datasets were taken for the
study: ADNI and local for AD, UCI and Istanbul for
PD. The AD dataset was subjected to pre-processing
and features were extracted. The PD dataset contained
distinct features and were directly subjected to feature
extraction. SFO was proposed to select the most infor-
mative and distinct features from both the datasets.
Lastly, the KELM classifier classified them as either
diseased or normal. The feature selection process was
compared with other similar algorithms like Genetic
Algorithm (GA) and Grey Wolf Optimisation (GWO).
Similarly, the effectiveness of the method proposed was
also assessed with other classifiers like Random Forest
(RF), K-NN and Support Vector Machine (SVM).
Experimental outcomes have demonstrated a high accu-
racy level in both AD and PD diagnosis with appreci-
able sensitivity and specificity. For AD diagnosis, the

Table 16. Experimental outcomes of the feature selection approaches on Istanbul dataset.

Method Features
selected

Acc (%) Sen (%) Spec (%) G-mean (%) F-1 score (%)

SFO-KELM 8 99.45 99.01 100 99.50 98.9
GA-KELM 10 92.61 94.32 95.55 94.93 94.8
GWO-KELM 6 95.94 97.86 96.74 97.29 96.46

Table 17. Comparison of proposed SFO-KELM with other
classifiers in PD diagnosis.

Method Accuracy (%)

UCI Istanbul

SFO-RF 94.70 95.88
SFO-KNN 96.24 95.76
SFO-SVM 98.12 97.87
SFO- KELM 99.52 99.45

Table 18. Overall results obtained with unseen data.

Dataset Acc (%) Sen (%) Spec (%) G-Mean (%) F-1 score (%)

ADNI 97.64 94.55 96.60 95.81 95.06
UCI 96.97 98.16 95.73 96.62 98.16
Istanbul 98.24 97.60 98.58 98.09 99.10

Table 19. Comparison of the proposed method with other state of art methods.

Study Method Disease Acc (%)

Spadoto et al.35 Evolutionary based – Harmony Search, gravitational search and OPF PD 84.01
Astrom et al.34 Parallel NN PD 91.02
Chen et al.30 Fuzzy KNN PD 96.07
Cai et al.33 SVM and Bacterial Foraging Optimisation PD 97.42
Cai et al.37 Chaotic Bacterial Foraging Optimisation Enhanced Fuzzy KNN Approach, PD 97.89
Zhang et al.38 Stationary Wavelet Entropy and Predator-Prey Particle Swarm

OptimisationOptimization’
AD 92.73

Jialin Peng et al.42 Structured Sparse Kernel Learning AD 96.01
Khan et al.45 Instance-Based Learning Techniques AD 96
Shankar et al.46 Group Grey Wolf Optimisation Based Features with Convolutional Classifier AD 96.23
Islam and Zhang47 Ensemble of Deep CNN AD 93.18
Silva et al.49 Haralick Texture Features, Feature Selection using GA and PSO AD 78.9 and 77.66
Proposed method SFO and KELM AD/PD 99.3/99.5
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highest classification rate was attained in the AD versus
NC classification using the ADNI dataset (99.32%)
and local dataset (98.65%). For PD diagnosis, the high-
est accuracy of 99.52% and 99.45% was achieved on
the UCI and Istanbul datasets respectively. It was also
observed that running the algorithm 10 times resulted
in better selection strategy and classification accuracy.
Experiment with unseen data was also adopted for a
better estimation of the final model’s error. The SFO
algorithm was quick to converge, yielding the highest
fitness among the other optimisation algorithms.
Trained with AD and controls, and on PD, the model
could be specifically be efficient when trying to differ-
entiate between MCI versus AD versus NC and PD ver-
sus non-PD. Therefore, the model is an ideal tool
effective in clinical practise as it consumes less time and
provide significant performance in distinguishing only
slightly different images. This method has proved better
at predicting the class and can act as a second expert in
diagnosis at an early stage. It can be concluded that the
method proposed can be extended to other diseases like
glaucoma, age-related macular degeneration, breast
cancer, hepatitis and so on in the future. The results can
help physicians start the treatment early and have con-
trol over the disease progression. Future research is
needed to determine the procedure’s accuracy in diag-
nosing persons in pre-clinical stage of the disease and,
perhaps, as a diagnostic tool for people at an elevated
risk of acquiring dementia. Secondly, the model must
be investigated combining clinical, genetic, cognitive
and other biomarkers to enhance the prediction rate of
complete-blown development of dementia in MCI
patients and near PD subjects. Thirdly, hybridisation of
algorithms may yield better accuracy with even lesser
number of features being selected.
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